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Abstract

We use the superposition T-matrix method to solve the Maxwell equations and compute electromagnetic scattering

characteristics of a 3D volume filled with densely packed, randomly distributed, wavelength-sized spherical particles. Our

numerically exact data provide, for the first time, a direct demonstration of the onset and evolution of coherent

backscattering with increasing number of particles and prove unequivocally that weak localization of electromagnetic

waves can survive even in densely packed particulate media.
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1. Introduction

The effect of weak localization (WL) (or coherent backscattering) of electromagnetic waves by discrete
random media was predicted in [1] and has been the subject of active theoretical and laboratory research [2–7].
The origin of WL is illustrated in Fig. 1 which shows a random group of particles illuminated by a plane wave
propagating in the direction n̂ill. If the observation direction n̂obs is far from the exact backscattering direction
given by �n̂ill, then the average effect of interference of conjugate scattered waves going through various
strings of particles in opposite directions is zero, owing to randomness of particle positions. Consequently, the
observer measures some average, incoherent intensity. However, at exactly the backscattering direction
ðn̂obs ¼ �n̂illÞ, the phase difference between the conjugate paths involving any string of particles is identically
equal to zero, and the interference is always constructive.

It is important to recognize that the very concepts of wave phase, reciprocity, and ladder and cyclical
diagrams invoked to explain WL are implicitly based on the assumption that each particle in a particle string
(Fig. 1) is located in the far-field zones of the previous and the following particle, so that a wave scattered by a
particle develops into a transverse spherical wave by the time it reaches another particle [7]. This assumption is
consistent with a number of successful laboratory measurements of WL for dilute particle suspensions and
allows one to use the microphysical theory of WL valid in the limit of vanishing particle packing density and
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Fig. 1. Schematic explanation of WL. The direct (solid arrows) and reverse (dashed arrows) wave paths go through the same string of n

particles, but in opposite directions.

Fig. 2. Scattering geometry. In this case the large spherical domain is filled with 160 randomly positioned particles.
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closely related to the microphysical theory of radiative transfer [7–10]. However, the criteria of far field
scattering are rather stringent [7] and are often violated in the case of densely packed particles, thereby making
more difficult and less definitive the interpretation of laboratory measurements of light backscattered by
dense particle suspensions and particulate surfaces [11,12]. It is thus clear that quantitative analyses of
backscattering measurements for densely packed particulate media must ultimately be based on direct
solutions of the Maxwell equations.

To the best of our knowledge, an unequivocal demonstration of WL by 3D multi-particle groups based on a
direct, numerically exact solution of the Maxwell equations has never been reported, which is explained by the
extreme analytical and numerical complexity of such computations (e.g., [9,13,14]). However, the availability
of the efficient and numerically exact superposition T-matrix approach [15,16] coupled with the rapidly
increasing power of scientific workstations has made possible a direct demonstration of the onset and
evolution of WL with increasing number of particles filling a finite 3D volume. This demonstration is the main
objective of this paper.
2. Numerical results

As shown in Fig. 2, we assume that a number of identical small particles fill a spherical volume with a radius
R much greater than the particle radius r. In our computations, we fixed the size parameter of the particles at
kr ¼ 4, where k is the wave number in the surrounding medium, whereas the size parameter of the spherical
volume was fixed at kR ¼ 40. The particle refractive index was set at 1.32, thus being representative of both
water and water ice at visible wavelengths. The number of particles in the spherical volume, N, was varied
between 1 and 160, thereby yielding particle volume concentrations ranging from 0.1% to 16%.

The randomness of particle positions inside the large spherical volume was simulated in two steps. First, we
used a random-number generator to assign 3D coordinates to each of the N particles with a trial-and-error
procedure ensuring that the particles do not overlap. Second, all group scattering characteristics were
averaged over the uniform orientation distribution of the resulting N-particle configuration with respect to the
laboratory coordinate system. This procedure yielded in effect an infinite number of random realizations of an
N-particle group.
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We assume that the large spherical volume is illuminated by a plane electromagnetic wave or a parallel
quasi-monochromatic beam of light propagating in the direction n̂ill. The angular distribution and
polarization state of the light scattered by the entire N-particle group in random orientation is fully described
by the so-called normalized Stokes scattering matrix. The latter specifies the transformation of the Stokes
parameters I, Q, U, and V of the incident light into those of the light scattered in the observation direction n̂obs
in the far-field zone of the entire spherical volume [16,17]:
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2
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In this equation, Y is the scattering angle (Fig. 2), the Stokes parameters are defined with respect to the
scattering plane, and the (1,1) element of the scattering matrix, called the phase function, is normalized:

1

2

Z p

0

dY sinYa1ðYÞ ¼ 1: (2)

The elements of the scattering matrix were computed using the highly efficient superposition T-matrix code
described in [15,16]. The main advantage of this semi-analytical procedure is that the orientation-averaging
step requires only a minor fraction of the total CPU time. The results of the extensive T-matrix computations
are summarized in Fig. 3. Note that the specific block-diagonal structure of the scattering matrix in Eq. (1)
follows from the T-matrix results and is largely caused by averaging over the uniform orientation distribution
of the multi-particle groups and by sufficient randomness of particle positions within each group. All
scattering matrix elements denoted by the zeros were found to be at least an order of magnitude smaller than
the smallest of the non-zero elements (in the absolute-value sense).

3. Discussion

The phase function describes the angular distribution of the scattered intensity provided that the incident
light is unpolarized. Fig. 3(a) clearly demonstrates several important effects of increasing the number of
particles in the system. First, the constructive interference of light singly scattered by the component particles
in the forward direction causes a strong forward-scattering enhancement [18] which eventually starts to
resemble the diffraction peak typical of a solid particle with a size much larger than the wavelength [see the
insert in Fig. 3(a)]. Second, the phase functions at scattering angles 301pYp1701 become progressively
smooth and featureless, as a consequence of increasing amount of multiple scattering. Third, and most
important from our perspective, the phase functions at scattering angles Y41701 start to develop a
backscattering enhancement which becomes quite pronounced for N ¼ 160 [see Fig. 3(e)]. This feature has an
angular width and an amplitude indicative of an interference origin [2–5] and, as we will further substantiate,
is the most obvious manifestation of coherent backscattering.

The ratio a2/a1 is identically equal to one for scattering by a single sphere. Therefore, the rapidly growing
deviation of this ratio from the value one for the multi-particle groups with NX5 is a very sensitive indicator
of the increasing effect of multiple scattering [Fig. 3(b)]. Similarly, a4(1801)/a1(1801) ¼ �1 for single scattering
by an isolated sphere, but multiple scattering in particle groups with NX5 causes this quantity to grow quite
significantly [Fig. 3(c)]. The degree of linear polarization of the scattered light for unpolarized incident light is
given by the ratio �b1/a1. Panel 3(d) shows that the most obvious effect of increasing N is to smooth out the
oscillations in the polarization curve for the single wavelength-sized sphere and, on average, to make
polarization more neutral.

If the incident light is polarized linearly in the scattering plane then Q ill
¼ I ill and U ill

¼ V ill
¼ 0. The

corresponding angular distributions of the co-polarized [i.e., (I obs+Qobs)/2] and cross-polarized [i.e.,
(Iobs�Q obs)/2] scattered intensities are shown in Fig. 3(f) and (g), respectively. Similarly, Figs. 3(h) and
(i) depict the ‘‘same-helicity’’ [i.e., (I obs+V obs)/2] and ‘‘opposite-helicity’’ [i.e., (Iobs�V obs)/2] scattered
intensities for the case of incident light polarized circularly in the counterclockwise direction when looking in
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Fig. 3. Results of T-matrix computations.
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the direction of propagation (Q ill
¼ U ill

¼ 0 and V ill
¼ I ill). All of these quantities exhibit WL in the form of

backscattering peaks rapidly growing in amplitude with N. The angular widths of these peaks are
approximately the same, which testifies again to their common interference origin. The onset of coherent
backscattering is especially demonstrative in Figs. 3(g) and (h) since the corresponding single-particle curves
show no backscattering enhancement at all.

Figs. 3(j) and (k) depict the angular profiles of the so-called linear, mL, and circular, mC, polarization ratios
defined as the ratio of the cross-polarized to co-polarized scattered intensities and the ratio of the same-helicity
to the opposite-helicity scattered intensities, respectively. These quantities are widely used in radar and
lidar remote sensing [7,19] because they vanish at the exact backscattering direction if multiple scattering is
insignificant and the scattering particles are spherically symmetric. Our results show that multiple
scattering causes an increasing deviation of mL(1801) and mC(1801) from zero, while WL causes pronounced
backscattering peaks in the mL and mC angular curves.

All manifestations of multiple scattering and WL discussed so far are quite consistent, both qualitatively
and semi-quantitatively, with those predicted by the asymptotic low-density microphysical theory [7–10]. This
result indicates that even in densely packed particulate media, the waves scattered along strings of widely
separated particles still provide a significant contribution to the total scattered signal and make quite
pronounced the classical multiple-scattering and WL effects.

One manifestation of WL that is not seen in our results is the so-called polarization opposition effect (POE)
[20]. However, POE causes a much more subtle polarization feature than the backscattering enhancement of
intensity [10,20], and the former may be masked by the strong negative polarization branch at backscattering
angles exhibited even by the single-particle curve [Fig. 3(l)]. Furthermore, it is still uncertain whether POE can
be caused by wavelength-sized particles like the ones used in this study [21].

4. Conclusion

In summary, our exact T-matrix data provide a vivid demonstration of the onset and evolution of coherent
backscattering with increasing number of particles and prove unequivocally that WL does occur even in
densely packed particle groups. These results should have significant implications for particle characterization
and remote sensing research [19,22–24]. Furthermore, the success of this study suggests that the T-matrix
approach could eventually be used to model the onset of strong localization, which remains to be a rather
‘‘evasive’’ effect [25–29]. The advantage of the approach based on a direct and numerically exact solution of
the Maxwell equations is that it can potentially yield all quantitative characteristics of a complex scattering
system some (or most) of which may not be easy to observe and accurately measure. Another useful extension
of our study would be to consider multiple scattering by nonspherical particles [30,31].
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